Targeting EZH1 and EZH2 contributes to the suppression of fibrosis-associated genes by miR-214-3p in cardiac myofibroblasts

نویسندگان

  • Wen-Si Zhu
  • Chun-Mei Tang
  • Zhen Xiao
  • Jie-Ning Zhu
  • Qiu-Xiong Lin
  • Yong-Heng Fu
  • Zhi-Qin Hu
  • Zhuo Zhang
  • Min Yang
  • Xi-Long Zheng
  • Shu-Lin Wu
  • Zhi-Xin Shan
چکیده

The role of microRNA-214-3p (miR-214-3p) in cardiac fibrosis was not well illustrated. The present study aimed to investigate the expression and potential target of miR-214-3p in angiotensin II (Ang-II)-induced cardiac fibrosis. MiR-214-3p was markedly decreased in the fibrotic myocardium of a mouse Ang-II infusion model, but was upregulated in Ang-II-treated mouse myofibroblasts. Cardiac fibrosis was shown attenuated in Ang-II-infused mice received tail vein injection of miR-214-3p agomir. Consistently, miR-214-3p inhibited the expression of Col1a1 and Col3a1 in mouse myofibroblasts in vitro. MiR-214-3p could bind the 3'-UTRs of enhancer of zeste homolog 1 (EZH1) and -2, and suppressed EZH1 and -2 expressions at the transcriptional level. Functionally, miR-214-3p mimic, in parallel to EZH1 siRNA and EZH2 siRNA, could enhance peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and inhibited the expression of Col1a1 and Col3a1 in myofibroblasts. In addition, enforced expression of EZH1 and -2, and knockdown of PPAR-γ resulted in the increase of Col1a1 and Col3a1 in myofibroblasts. Moreover, the NF-κB signal pathway was verified to mediate Ang-II-induced miR-214-3p expression in myofibroblasts. Taken together, our results revealed that EZH1 and -2 were novel targets of miR-214-3p, and miR-214-3p might be one potential miRNA for the prevention of cardiac fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway

Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...

متن کامل

MicroRNA-142-3p inhibits hypoxia/reoxygenation-induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1

Myocardial ischemia/reperfusion (I/R) injury may cause the apoptosis of cardiomyocytes as well as cardiac fibrosis, which is characterized as the transdifferentiation of fibroblasts to myofibroblasts and collagen deposition. MicroRNAs (miRNAs or miRs) have been demonstrated to be involved in myocardial I/R injury. However, the underlying molecular mechanism remains largely unclear. In the prese...

متن کامل

The effect of aerobic exercise on MMP-2 / miR-21 signaling pathway of cardiac fibrosis in elderly rats

Background :The concept of survival has changed since the twentieth century to guarantee quality of life in the twenty-first century (1). Aging is associated with a certain degree of interstitial fibrosis, which progresses to heart failure. Therefore, finding new and practical methods is an important and necessary help to reduce heart tissue fibrosis in the elderly (2). Providing mechanisms by ...

متن کامل

Divergent Requirements for EZH1 in Heart Development Versus Regeneration.

RATIONALE Polycomb repressive complex 2 is a major epigenetic repressor that deposits methylation on histone H3 on lysine 27 (H3K27me) and controls differentiation and function of many cells, including cardiac myocytes. EZH1 and EZH2 are 2 alternative catalytic subunits with partial functional redundancy. The relative roles of EZH1 and EZH2 in heart development and regeneration are unknown. O...

متن کامل

Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas.

We investigated the transcriptional and epigenetic repression of miR-29 by MYC, HDAC3, and EZH2 in mantle cell lymphoma and other MYC-associated lymphomas. We demonstrate that miR-29 is repressed by MYC through a corepressor complex with HDAC3 and EZH2. MYC contributes to EZH2 upregulation via repression of the EZH2 targeting miR-26a, and EZH2 induces MYC via inhibition of the MYC targeting miR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016